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1. Introduction

BMN matrix theory with U(N) gauge group has been proposed as the DLCQ limit of M

theory on the 11-dim plane wave background with the maximal supersymmetry [1]. The

action of this model can be also obtained from the matrix regularization of the membrane

action in the pp-wave background, or the quantum mechanics of D0 branes on the back-

ground of the 11-d pp-wave compactified to 10-dim [2], or by dimensional reduction of

4-dim susy Yang-Mills theory on R × S3 [3]. Each vacuum of the BMN matrix theory is

characterized by a partition of N and describes concentric fuzzy 2-spheres, which can be

interpreted as giant gravitons in the pp-wave background.

The matrix theory has SO(3) × SO(6) symmetry and these fuzzy 2-sphere vacua can

have also SO(3) angular momentum, breaking the supersymmetry partially. While the

BPS configurations with SO(6) angular momentum are trivial ones, the BPS configurations

with SO(3) angular momentum are highly nontrivial. Only a few exact BPS configurations

have been found for finite N [4 – 6]. In the infinite N ( continuum ) limit the general BPS

configurations have been found to be Riemann surface with arbitrary number of genus and

spikes [6]. The BPS configurations for finite N , which are expected to be a special class of

fuzzy Riemann surfaces, have not been understood in general. (See however ref. [7]. )

In this work, we investigate these 1/2 BPS configurations carrying SO(3) angular

momentum for finite N in BMN matrix theory. A detailed fluctuation analysis of the BPS

configurations near the abelian BPS configurations and also near the nonabelian ground

states leads to new insight on how nonabelian BPS configurations emerge. Based on this

analysis, we make several observations about these 1/2 BPS configurations of the BMN

matrix theory. One is about the maximum value of the SO(3) angular momentum for any

irreducible nonabelian configuration, which is defined as one which cannot be expressed as

a sum of commuting configurations. We also find a new explicit class of BPS configurations

for higher N .
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The simplest BPS configurations with SO(3) angular momentum are abelian solutions

which are present even in U(1) theory. In the U(N) theory, the abelian BPS configura-

tion would be made out of the time-dependent field configurations which are all simul-

taneously diagonalizable. The next simplest ones are the ellipsoidal solutions which are

time-dependent configurations built on vacuum fuzzy spheres [4]. These fuzzy ellipsoidal

solutions become abelian when the angular momentum, say J3, exceeds a critical value of

order N3. (A similar phenomena concerning the maximal angular momentum of nonabelian

angular momentum has been observed recently, in a somewhat different context [8].)

For small finite N , some toroidal BPS configurations have previously been found ex-

plicitly [5, 6]. All 1/2 BPS solutions with finite SO(3) angular momentum when N = 2

are known but we think that not all the solutions with N = 3 are known yet. We do a

detailed analysis of the BPS configurations lying near abelian solutions or vacuum fuzzy

spheres. This analysis shows that nonabelian BPS configurations emerge from the known

solutions in a very specific way.

BMN matrix theory and BPS states have been analyzed in detail from the superalgebra

analysis and the perturbative approach of the BPS states by expanding the theory around

each vacuum in the large µ limit [2, 9, 10]. The infinite µ limit is a free theory and the

interaction is of order 1/µ. This consideration does not directly involve the classical BPS

configurations, which are nonperturbative. The protected spectrum of the matrix theory

in the large N limit is also related to the linear fluctuation spectrum of the spherical M5-

brane [11]. Our BPS configurations in the large N limit should also play a role in this

context.

As the BMN matrix theory arises from the pp-wave limit of the AdS space for the

multiple M2 or M5 branes, the BMN physics captures the M2 or M5 brane dynamics in

a certain limit by the AdS-CFT correspondence. The 1/2 BPS giant gravitons in AdS5 ×
S5 space can be understood in terms of the free fermion picture, which appears in both

supergravity description and the N = 4 Yang-Mills theory description. The 1/2 BPS giant

gravitons in the M-theory in the pp-wave vacuum would correspond to the vacuum of the

matrix theory [12, 13]. The 1/4 BPS giant gravitons would correspond to the 1/2 BPS

configurations in the matrix theory, and our fluctuation analysis tells how the 1/4 BPS

configurations emerges. By the AdS-CFT correspondence, our analysis of the BPS objects

should shed some light on the field theoretic physics on M2 and M5 branes.

The plan of this work is as follows. In Sec.2, we review some basic aspects of BMN

matrix theory and introduce irreducible BPS configurations. In Sec.3, we perform a pertur-

bative analysis of the BPS configurations near the abelian solutions and the fuzzy sphere

vacua. In Sec.4, we find some new solutions by writing the known solution in higher dimen-

sional representations as well as find some genuinely new solutions. In Sec.5 we conclude

with some remarks.

2. Plane-wave matrix theory

In this work, we consider a special class of 1/2 BPS configurations in BMN matrix theory.

BMN matrix theory has SO(3) × SO(6) global symmetries and we are here interested the
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classical BPS configuration with only SO(3) angular momentum. Thus we focus on the

part of BMN matrix gauge theory for three N × N hermitian matrices Xa, a = 1, 2, 3,

whose Lagrangian is

L =
1

2
Tr(D0Xa)

2 − U(X) , (2.1)

where D0Xa = Ẋa − i[A0,Xa], and the potential is

U(X) =
1

2
Tr

(

µ

3
Xa +

i

2
ǫabc[Xb,Xc]

)2

(2.2)

with µ > 0 by a choice of convention. (Here we have scaled out the other parameters in

the theory for simplicity.) There is a local time-dependent U(N) gauge symmetry, and any

physical configuration must satisfy the Gauss law constraint,

∑

a

[Xa,D0Xa] = 0 . (2.3)

The conserved energy is

H =
1

2
Tr(D0Xa)

2 + U(X) . (2.4)

There is a SO(3) global rotation symmetry of three matrices X1,X2,X3, whose conserved

quantities are

Ja = ǫabcTrXbD0Xc . (2.5)

The vacuum configurations are the minima of the potential U(X) = 0 and satisfy the

equation

[Xa,Xb] =
iµ

3
ǫabcXc . (2.6)

With the scaling Xa = µ
3
La, La form the SU(2) algebra. A partition (p1, p2, , , , , pK)

of the number N with natural numbers pk such that
∑

k pk = N characterizes a unique

gauge equivalent classical vacuum where each pk denotes the dimension of the irreducible

representation of the SU(2) generators La. For example for N = 3, we have the symmetric

vacuum (1, 1, 1) where La becomes three trivial 1-dim representations, the (2, 1) vacuum

where La forms one 2-dim irreducible representation and one trivial 1-dim one, and the (3)

vacuum where La is the 3-dim irreducible representation. For general N , the symmetric

phase La = 0 would be denoted as the (1, 1, ..., 1) vacuum , and the maximally broken

vacuum, where La is the N -dim irreducible representation, would be denoted as the (N)

vacuum. The number of partitions would be the number of the gauge-equivalent vacua.

As N increases, the number of the partition of N grows very fast and so is the number of

gauge inequivalent vacua.

For a given conserved value, say, J3, the energy can be reexpressed as

H =
1

2

(

D0X1 ±
(

µ

3
X2 + i[X3,X1]

))2

+

(

D0X2 ∓
(

µ

3
X1 + i[X2,X3]

))2

+
1

2
(D0X3)

2 +
1

2

(µ

3
X3 + i[X1,X2]

)2

± µ

3
J3 . (2.7)

– 3 –
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Thus there is a BPS bound on the energy

H ≥ µ

3
|J3| , (2.8)

where the Noether charge J3 plays the role of a central term. (The charge J3 is really

the so-called ‘non-central’ term as the supercharge is not invariant under it [1].) The

bound is saturated for the so-called BPS configurations which should satisfy the Gauss law

constraint (2.3) and the following BPS equations;

D0X1 = ±
(

−µ

3
X2 − i[X3,X1]

)

,

D0X2 = ±
(µ

3
X1 + i[X2,X3]

)

,

D0X3 = 0,
µ

3
X3 + i[X1,X2] = 0 . (2.9)

The upper sign is for J3 > 0 and the lower sign is for J3 < 0 . For BPS configurations, the

central charge becomes

J3 = ±µ

3
Tr(X2

1 + X2
2 − 2X2

3 ) . (2.10)

Thus a BPS configuration of finite energy should satisfy the inequality

Tr(X2
1 + X2

2 ) ≥ 2Tr(X2
3 ) . (2.11)

As J3 is related to the rotation in the X1,X2 plane, the above inequality is consistent with

the notion that the BPS solutions are stretched along the 12 plane due to the centrifugal

force.

To find nontrivial solutions, we start with the gauge choice A0 = X3 in eq. (2.9), and

read off the time dependence of Xa. We introduce a complex matrix W and a hermitian

matrix Z, both of which are time-independent, and rewrite Xa as follows;

X1 + iX2 =
µ

3
e

iµt

3 W , X1 − iX2 =
µ

3
e−

iµt

3 W̄ , X3 =
µ

3
Z . (2.12)

The BPS equations and Gauss law in eqs. (2.9) and(2.3) become [W, W̄ ] = 2Z and

[W, [W̄ , Z]] + [W̄ , [W,Z]] = 4Z . (2.13)

These equations are invariant under SU(N) gauge transformations. In addition, there is

an overall U(1) phase rotation of W generated by the charge J3. A simple solution of the

above equations is

W = L1 + iL2 = L+ , W̄ = L1 − iL2 = L− , [W,W̄ ] = 2L3 . (2.14)

This solution describes the vacuum solution as the time-dependent X1,X2,X3 in eq. (2.12)

are gauge transforms of the vacuum solution Xa = µLa/3 by an unitary transformation

eitL3 . The vacuum solution has zero central charge.

We are interested in BPS configurations with nonzero charge J3. There are many

vacua, all of which are separated by some potential energy barrier. Let us imagine to add

– 4 –
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a bit of J3 charge at a given vacuum and find the corresponding BPS configurations in a

given vacuum. We expect many gauge inequivalent BPS configurations built in a given

vacuum for a given charge J3. Some of these solutions may be continuously connected to

each other for a given charge. As we increase the charge, the solutions disconnected from

each other may be get connected as, for example, the configurations goes over the energy

barrier.

To study these BPS configurations, let us start from the abelian vacuum (1, 1, 1, ..., 1)

where Xa = 0, and add some J3 charge. One can easily find that the purely abelian

configurations where W is diagonal and traceless satisfy the BPS equations (2.13) with

Z = 0. We parameterize the abelian solution as

W = diag(λ1, λ2, ..., λN ) . (2.15)

The configuration is completely lying in the 1-2 plane as X3 = 0. The central charge

becomes

J3 =
µ3

27

∑

k

|λk|2 . (2.16)

There is no upper bound on the value of J3. For a given J3, the configuration space is

parameterized by N complex numbers. We will do a small fluctuation analysis of the

above abelian solutions in the next section to find out whether they can be deformed to

nonabelian configurations.

To find nontrivial solutions, let us start from a vacuum (p1, p2, .., pK) and add a small

J3 charge. There may be several possible BPS solutions. The simplest one is the SU(2)

type where Xa is a linear combination of La whose representation is characterized by the

partition (p1, p2, ..., pK). We start with W being a linear combination of La. By a SU(2)

gauge transformation, we choose [W,W̄ ] to be proportional to L3, which is diagonal. This

in turn implies that W should be a linear combination of L1, L2. Then the solution of the

BPS equation becomes [4]

W = c1L+ + c2L−, W̄ = c̄1L− + c̄2L+, Z = (2|c1|2 − 1)L3 , (2.17)

where |c1|2 + |c2|2 = 1. Now we can make a eiαL3 gauge rotation and a W → eiβW

spatial rotation to make both a, b real. Then the solution becomes the well-known ellipsoid

solution
X2

(c1 + c2)2
+

Y 2

(c1 − c2)2
+

Z2

(c2
1
− c2

2
)2

=
∑

c

(Lc)
2 . (2.18)

Since c2
1 + c2

2 = 1, the conserved charge J3 becomes

J3 =
µ3

27
· 8

3
c2
1(1 − c2

1)
∑

a

Tr(La)
2 . (2.19)

Here we have used that TrL2
1 = TrL2

2 = TrL2
3 =

∑

a Tr(La)
2/3. Note that the case where

c1 = 1, c2 = 0 or c1 = 0, c2 = 1 is the vacuum solution and the case where c2
1 = c2

2 = 1/2

is the configuration of the collapsed ellipsoid to an abelian thin line which is rotating on

– 5 –
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1-2 plane. The central charge J3 takes its maximal value at this abelian limit. Thus this

solution is connected to the abelian solution at the maximal J3 limit.

For the N -dim irreducible representation, TrL2
c = N(N2 − 1)/4. For other representa-

tions (p1, p2, ..., pK) such that
∑

k pk = N , TrL2
c =

∑

k pk(p
2
k − 1)/4 ≤ N(N2 − 1)/4. Thus,

among the SU(2) type solutions from the various vacua, the one with N -dim irreducible

representation from the (N) vacuum takes the maximal value,

Jmax =
µ3

27

N(N2 − 1)

6
, (2.20)

at the abelian limit.

One can easily generalize the above two types of solutions by putting them together.

For any two commuting solutions W = W1,W2 of the BPS equations so that [W1,W2] =

0, [W1, W̄2] = 0, their sum W = W1 + W2 is also a BPS configuration. Thus in the

vacuum where La is not irreducible, we can generalize the above ellipsoid solution so that

each irreducible part has a different parameter c1 and also one can add abelian solutions

which commute with this generalized nonabelian solution. This leads to a division of all

BPS configurations into reducible ones and irreducible ones. The irreducible ones are those

which cannot be expressed as a sum of commuting BPS solutions. Thus all abelian solutions

with N ≥ 2 are reducible.

As an example for a reducible BPS configuration, we can consider a mixed-type BPS

configuration built from the (2, 1) vacuum in the N = 3 case, which is

W =







c3 c1 0

c2 c3 0

0 0 −2c3






, (2.21)

where c2
1 + c2

2 = 1 and c3 is arbitrary. Then Z = (c2
1 − 1/2) diag(1,−1, 0). When c2

1 = c2
2 =

1/2, the above solution can be diagonalized. When c1 = 1, c2 = c3 = 0, it becomes the

vacuum (2, 1). Its angular momentum is

J3 =
µ3

27
(6c2

3 + 4c2
1(1 − c2

1)) . (2.22)

Note that c3 can be arbitrary and so there is no bound on J3 for this solution. One

can generalize this type of solution easily. For any nonabelian vacuum where La is not

irreducible, there is at least one unbroken abelian U(1) subgroup which commutes with

La, and so one can add the J3 charge into both abelian and nonabelian sectors. These type

of solutions are reducible and can be decomposed to a sum of irreducible ones.

We are interested in all BPS configurations. Besides the ellipsoidal solutions, one may

wonder whether there exist other types of nonabelian solutions built on a given nonabelian

vacuum by adding small angular momentum. In the next two sections, we will add some

new understanding on this topic.

3. Fluctuation analysis

For example, the ellipsoidal solution (2.17) collapses to the abelian solution at its maximal

J3 value. Thus one suspects that all nonabelian solutions are connected to abelian solutions

– 6 –



J
H
E
P
0
6
(
2
0
0
8
)
0
4
1

(2.15). To find out this connection, let us make a small perturbation of the abelian solution,

W = λiδij + ǫij, W̄ = λ∗
i δij + ǫ∗ji , (3.1)

where ǫii = 0 for each i. Note that a pure gauge transformation would be ǫij = (λi−λj)χij

with antihermitian χij. Then

[W,W̄ ]ij = (λi − λj)ǫ
∗
ji − (λ∗

i − λ∗
j)ǫij . (3.2)

Then the left-hand-side of the BPS equation (2.13) becomes

l.h.s. = 2|λi − λj |2
(

(λi − λj)ǫ
∗
ji − (λ∗

i − λ∗
j)ǫij

)

, (3.3)

which should be 4[W,W̄ ]. Thus the BPS equation is satisfied if for all non-vanishing ǫij

which is not a pure gauge transformation,

|λi − λj |2 = 2 . (3.4)

The central charge does not change from the abelian result to the first order in perturbation.

This analysis shows how any nonabelian configuration may be connected to the abelian

solutions. This analysis does not tell whether an irreducible nonabelian solution becomes

abelian as J3 increases or decreases at some critical value, nor tell whether an irreducible

nonabelian solution becomes abelian at once, or piece-wise.

Let us now consider how the above analysis appears in the ellipsoid case (2.17). With

N -dim irreducible La, the solution becomes abelian when c1 = c2 = 1/
√

2 as W =
√

2L1.

The solution W =
√

2L1 can be diagonalized to be

W =
√

2diag(l, l − 1, l − 2, ...,−l + 1,−l) , (3.5)

where 2l + 1 = N . This solution satisfies the criterion (3.4). The ellipsoid solution (2.17)

near this abelian solution becomes W = (1 − ǫ2)L1 + ǫL2 which has nonzero ǫi,i+1.

There are other possible cases. For example, for a given N , we could put λi on a circle

whose center is at the origin. We require |λn − λn+k|2 = 2 for a fixed k and λN+n = λn.

We use the criteria (3.4) to get

λn =
1√

2 sin πk
N

e
2iπnk

N . (3.6)

This abelian solution is gauge equivalent to the following one:

W =
1√

2 sin πk
N

Sk
N , SN =



















0 1 0 0 ... 0

0 0 1 0 ... 0

0 0 0 1 ... 0

. . . . ... .

0 0 0 . ... 1

1 0 0 . ... 0



















, (3.7)
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where the N -dim shift operator SN is a unitary matrix with eigenvalues e2πin/N with

n = 0, 1, 2, ..., N − 1. An irreducible nonabelian BPS solution may develop from this

abelian solution with nonzero ǫn,n+k. Indeed in the next section, we explore this possibility

in detail. The BPS charge J3 for this critical solution is

J3 =
µ3

27

N

2 sin2 πk
N

. (3.8)

For large N , the above J3 approaches µ3

27

N3

2π2k2 , which is smaller than the maximal value (2.20)

for the ellipsoidal case.

For an abelian solution, we draw a line between any pair of λi’s satisfying the condi-

tion (3.4). As λi lie on a complex plane, a graph made of those lines can be decomposed to

connected graphs. For each connected graph, there is a potential to develop a nonabelian

configuration. Of course there is no guarantee that nonabelian solutions can develop. Any

part or whole of a nonabelian BPS configuration will be come such a graph whenever some

or all of it becomes abelian.

For the SU(3) case with
∑

i λi = 0, let us consider the case where there points are

connected by two lines. Each of segment has length
√

2. They could lie on a straight

line or get bent and form a letter V shape. They may form an equi-triangle, or form a

sharper tipped V shape, get bent completely to be a single segment where two end points

overlap. All these abelian solutions have a potential to be nonabelian. For a straight string

and equi-triangle cases, the nonabelian solutions are known. For other bent cases, the

nonabelian extensions, if they exist, would be an interesting possibility. Now one can see

easily that the central charge (2.16) for these configuration takes the maximal value for

straight line. Similarly, we conjecture that the central charge (2.16) of connected graphs

of N points take the maximal value for the N points lying on a straight line (3.5).

Now let us change our focus to the BPS configurations built on nonabelian vacua. We

start from a nonabelian vacuum where La is nontrivial and add a small amount of J3. A

BPS configuration close to the vacuum can be approached by perturbation analysis. Of

course there is an ellipsoidal solution (2.17) near each vacuum. We deform the vacuum

solution by a small deformation,

W = L+ + δW . (3.9)

We first focus on the (N) vacuum case and expand the matrix δW as the sum of irreducible

representations of La. For example, the (3) vacuum in the N = 3 theory, SU(3) generators

belongs to 5-dim and 3-dim representations. The N -dim matrices T l
m, which belong to the

l representation, satisfy the commutation relations,

[L±, T l
m] =

√

l(l + 1) − m(m ± 1)T l
m±1, [L0, T

l
m] = mT l

m , (3.10)

which is consistent if T l†
m = (−1)mT l

−m . The normalization is TrT l
mT l′

n ∼ δll′δm+n,0. For

example T 1
1 = L+/

√
2, T 1

0 = −L0, T 1
−1 = −L−/

√
2 for the obvious l = 1 representation.

In this basis, the fluctuated W becomes

W = L+ + C l
mT l

m, W̄ = L− + (−1)mC̄ l
−mT l

m (3.11)

– 8 –
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with complex coefficients C l
m. We remove the gauge degrees of freedom by diagonalizing

[W,W̄ ] = 2Z, which leads to the following relations among the coefficients,

(−1)mC̄ l
−m+1Am−1 + C l

m+1Bm+1 = 0, m 6= 0, (3.12)

where Am =
√

l(l + 1) − m(m + 1) and Bm =
√

l(l + 1) − m(m − 1). This condition

implies

C l
−l = arbitrary, C l

−l+1 = 0 , (3.13)

and

[W,W̄ ] = 2L3 −
√

l(l + 1)(C̄ l
1 + C l

1)T
l
0 . (3.14)

The left-hand side of the BPS equation (2.13) becomes

l.h.s. = 8L3 − 2(l2 + l + 2)
√

l(l + 1)(C l
1 + C̄ l

1)T
l
0

−2
∑

m6=0

[

(−m + 2)(−1)mC̄ l
−m+1Am−1 + (m + 2)C l

m+1Bm+1

]

T l
m . (3.15)

Equating the above expression with four times the expression in eq. (3.14), we get that for

l 6= 1 C l
m vanishes for all m except m = −l, and for l = 1, C1

1 , C1
−1 can be arbitrary and

C1
0 vanishes.

Thus from the vacuum (N), the BPS configurations near the vacuum Xa = La should

be given as

W = La +
∑

l 6=1

C l
−lT

l
−l + C l

1T
1
1 + C1

−1T
1
−1 , (3.16)

where one can sum over all l which appear when the SU(N) generators are split into

irreducible representation of irreducible SU(2) algebra. Note that by gauge transformation

and U(1) rotation one can make C1
1 and C1

−1 to be real. The above analysis shows that

the ellipsoid solution W = c1L+ + c2L− grows out of the above fluctuation with nonzero

C1
1 , C1

−1.

Let us turn our attention to other vacua, for example, the vacuum (p1, p2, ..., pK) with
∑

k pk = N , in which case La = L1
a⊕L2

a⊕... with each Lk
a being pk-dim irreducible represen-

tation. Our linear fluctuation analysis can be extended directly. The fluctuation is replaced

by C l1l2..
m1m2..T

l1l2..
m1m2.. where (lk,mk) indicates the representation of the k-th irreducible part

of Lk
a. A coefficient can be nonzero if for all k either mk = −lk for or lk = 1,mk = 1.

This is how a BPS solution will develop when a small amount of J3 charge is added to a

nonabelian vacuum.

4. Some exact BPS solutions

Let us try to find some (new) exact solutions of the BPS equation (2.13), that is, of

1

2
[W 2, W̄ 2] = (WW̄ )2 − (W̄W )2 − [W,W̄ ] . (4.1)
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One could, for example, assume two polynomial equations

1

2
W 2W̄ 2 = (WW̄ )2 − WW̄ + f(WW̄, W̄W ) , (4.2)

1

2
W̄ 2W 2 = (W̄W )2 − W̄W + f(WW̄, W̄W ) , (4.3)

where f(WW̄, W̄W ) is an arbitrary polynomial of WW̄ and W̄W . Depending on the

function f , the above equations (4.2) and (4.3) could be independent and over-constraining.

Our favorite example is

f = αW̄W 2W̄ + βWW̄ 2W + q (4.4)

with real constants α, β, q. Requiring the hermicity of f leads to either α = β or

[WW̄, W̄W ] = 0.

The above polynomial equations are a slightly more general non-singular variant of the

commutation relation

[Z,W ] = W − q

W̄
, (4.5)

that were used in [5, 6] to solve the BPS equation (2.13). By multiplying W̄ on the above

equation from the right or left, we get eqs. (4.2) and (4.3) with f in eq. (4.4) with α = −1/2

and β = 0. Thus we get [WW̄, W̄W ] = 0 for the BPS configurations to satisfying (4.5). As

noted in ref. [5], the BPS equations (2.13) can be solved partially if there exists an analytic

function F such that

[Z,W ] = W + F (W̄ ) . (4.6)

Assuming that W is invertible and that there is a U(1) phase rotation symmetry in the

above equation, one gets (4.5) in general.

We consider that the [WW̄, W̄W ] = case in eqs. (4.1), (4.2), (4.3) is very interesting

and may leads to the new type of solutions. But we will not pursue this direction in this

work. We will focus here on the simpler case (4.5) which has a U(1) symmetry. When

q = 0, W,Z satisfy the SU(2) algebra and so the above equation degenerates to the vacuum

equation. As it has a U(1) symmetry and W 6= 0 for q 6= 0, we call the BPS configurations

satisfying the above equation as ”of toroidal type”. Multiplying by W̄ and taking the trace,

we get

qN = Tr(WW̄ − 2Z2) . (4.7)

The central charge of any configuration of such ansatz would be

J3 =
µ3

27
Tr(WW̄ − 2Z2) =

qNµ3

27
(4.8)

which should be positive. Thus we restrict to q > 0.

We try to solve the above torus-type equation (4.5) with the ansatz

W =















0 w1 0 ... 0

0 0 w2 ... 0

. . . . .

0 .. ... 0 wN−1

wN 0 .. .. 0















, (4.9)
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so that Wij = wiδi+1,j , mod N . Here we find some additional new solutions and some new

generalizations. Both WW̄ and W̄W are diagonal and

(WW̄ )ii = |wi|2 ≡ ri, (W̄W )ii = |wi−1|2 ≡ ri−1 . (4.10)

Consistency then requires the of alpha and beta to be -1/2, and

ri

(

ri−1 + ri+1

2

)

= r2
i − ri + q . (4.11)

If W is invertible so that all ri 6= 0, we divide the above equation by ri to get

ri +
q

ri
=

ri−1 + ri+1

2
+ 1 . (4.12)

When we sum over i, we get the constraint

1

N

∑

i

1

ri
=

1

q
, (4.13)

which implies that the average of the inverse 1/ri is 1/q.

The obvious solution would be ri = q independent of i, which is abelian as shown in

eqs. (3.6) and (3.7) with λk =
√

qei2πk/N . The analysis in the previous section implies that

there may be nonabelian solutions {r1, r2, ..., rN} near this constant solution if q is close

to the abelian value q = 1/(2 sin2(πk/N)).

Let us find some explicit solution by starting with N = 2 case. The explicit solution

for the equation (4.12) for N = 2 case is

r1 =
1 ±√

1 − 2q

2
, r2 =

1 ∓√
1 − 2q

2
. (4.14)

This is the ellipsoidal solution (2.17) with N = 2 as we can identify c2
1 = r1, c

2
2 = r2. There

are two obvious generalization of this N = 2 solution. First is somewhat trivial as one finds

the solution for all even N = 2K with the periodic condition rk+2 = rk for all k = 1, 2, ..,K.

Another one is the ellipsoidal solution W = c1L+ + c2L− as in eq. (2.17) where La are

N -dim representation of SU(2). If we consider an irreducible N -dim representation of

SU(2), we know that this generalized BPS configuration is also irreducible. This solution

is not new nor does not belong to the toroidal type (4.9).

For N = 3, there is no solution with all different r1, r2, r3. The type of solution that

appeared in ref. [6] was

r1 = r2 = 1 ±
√

1 − 4q

3
, r2 =

1

2

(

1 ∓
√

1 − 4q

3

)

, (4.15)

where 0 ≤ q ≤ 3/4. As in N = 2 case, we have two generalization of this solution. The first

one is the periodic extension for all N = 3K with rk+3 = rk. Another one is to rewrite the

above solution in terms of SU(3) generators and to generalize the solution to the N -dim

presentation of the SU(3) Lie-algebra. The above solution is rewritten as

W = c1L+ + c2P− , (4.16)
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where real c1, c2 satisfy c2
1 + c2

2 = 1 with c2
1 = r1/2, c

2
2 = r3, and

L+ =







0
√

2 0

0 0
√

2

0 0 0






, P− =







0 0 0

0 0 0

1 0 0






. (4.17)

With the definition L− = L†
+ and P+ = P †

−, we note that [P+, P−] = −L3 with

L3 = diag(1, 0,−1) and [L3/2, P+] = P+. Thus P+, P−, L3/2 are another SU(2) generators

in SU(3) lie algebra. Thus,

Z =

(

c2
1 −

c2
2

2

)

L3 =
3c2

1 − 1

2
L3 . (4.18)

The conserved central charge becomes

J =
µ3

27

3c2
1(1 − c2

1)

2

∑

a

Tr(La)
2 , (4.19)

where we used the isotropy to show Tr(L1P1 − L2P2) = Tr(L1P2 + L2P1) = 0 and TrL2
i =

4TrP 2
i =

∑

a L2
a/3. We see that when N = 3 this solution interpolates between two vacua,

(3) at c1 = 1 and (2, 1) at c1 = 0, via the abelian BPS solution at c1 = 1/
√

3. Note that

c1 = 1/
√

3, r1 = r2 = r3 = 2/3 and q = 2/3, and so the solution becomes abelian. Our

solution can be regarded as a nonabelian BPS solution growing out of this abelian solution.

The maximum value of the central charge for this type of solution appears at c2
1 = 1/2

which is not the abelian case c2
1 = 1/3. Thus one can see that the abelian solution can be

developed to the nonabelian ones by either adding or subtracting the central charge. Still

the maximum value of the central charge of this type is smaller than that of the abelian

limit of the ellipsoidal type (2.17).

Now we generalize L+ and P− to an arbitrary N -dim representation of SU(3). For

example the symmetric K product of 3-dim representation of SU(3) would be N =

(K +1)(K +2)/2 dimensional irreducible representation of SU(3). The adjoint representa-

tion is 8-dimensional. For general integer N , the representation would not be irreducible.

Even when we have an N -dim irreducible representation of SU(3), we do not have a max-

imal N -dim representation of SU(2) generator La. For N = 3 solution, L+ is for 3-dim

representation of SU(2) in SU(3) and Pa is for 2-dim representation of SU(2) in SU(3).

The 6-dim irreducible representation of SU(3), for example, belongs to the reducible 5+1-

dim representations of La and the reducible 3 + 2 + 1-dim representations of Pa. Thus our

BPS solution interpolates two vacua, (5, 1) at c1 = 1 and (3, 2, 1) at c1 = 0, via an abelian

BPS solution at c1 = 1/
√

3. By going to higher N -dim representation, our fuzzy geometry

becomes dense and could goes to continuum once an appropriate scaling is taken. This

process could fix the genus uniquely. Of course we expect the present solution has torus

topology in the continuum limit.

Now for N = 4, there are two types of solutions given in ref. [6]. There is no solution

where all ri are different. First one is the case where r1 = r2 = 1 +
√

1 − q and r3 = r4 =
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1 − √
1 − q where 0 ≤ q ≤ 1. This solution can be generalized to N = 4K cases with

ra+4 = ra. Also similar to SU(2) and SU(3) cases, one can reexpress this solution as

W = c1L+ + c2P− , (4.20)

where real c1, c2 satisfy c2
1 + c2

2 = 1, and

L+ =











0
√

2 0 0

0 0
√

2 0

0 0 0 0

0 0 0 0











, P− =











0 0 0 0

0 0 0 0

0 0 0
√

2√
2 0 0 0











. (4.21)

Note that [L+, L−] = [P+, P−] = 2L3 where L3 = diag(1, 0,−1, 0). The commutation

relation leads to

Z = (2c2
1 − 1)L3 . (4.22)

The conserved central charge becomes

J3 =
µ3

27

8

3
c2
1(1 − c2

1)TrL2
a . (4.23)

This solution interpolates the vacuum (3,1) at c1 = 0, 1 to itself via an abelian BPS solution

at c1 = 1/
√

2. Again, we can consider N -dim representation of SU(4) and generalize the

above solution to such a space. For example, the adjoint representation would be 15-

dimensional. The symmetric product of two 4-dim representation would be 10-dim, and

the anti-symmetric product of two 4-dim representation would be 6-dim.

The second type of solution with N = 4 is

r1 = r3 =
1

2
(3 ±

√

9 − 8q), r2 =
1

2
(r1 + 1 ±

√

(r1 + 1)2 − 4q),

r4 =
1

2
(r1 + 1 ∓

√

(r1 + 1)2 − 4q) . (4.24)

Again this solution can be generalized to N = 4K with ra+4 = ra. We reexpress the above

solution as

W = c1L+ + c2M+ + c3P− , (4.25)

where

L+ =











0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0











, M+ =











0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0











, P− =











0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0











. (4.26)

Here the coefficients ci are given by the relations, c2
1 = r1, c

2
2 = r2, c

2
3 = r2, and satisfy the

constraints c2
1 + 1 = c2

2 + c2
3 and c2

1(3 − c2
1) = 2c2

2c
2
3. The range of c1 is 0 ≤ c2

1 ≤ 1/3 or

1 ≤ c2
1 ≤ 3. The commutation of [W,W̄ ] leads to

Z = c2
1L3 + c2

2M3 − c2
3P3 , (4.27)

– 13 –



J
H
E
P
0
6
(
2
0
0
8
)
0
4
1

where

L3 =
1

2
diag(1,−1, 1,−1), M3 =

1

2
diag(0, 1,−1, 0), P3 =

1

2
diag(1, 0, 0,−1) . (4.28)

The central charge becomes

J =
µ3

27

4

3
c2
1(3 − c2

1)TrM2
a , (4.29)

where we have used L3 = −M3 +P3 and TrL2
a = 2TrM2

a = 2TrP 2
a . When c2

1 = 0, (c2
2, c

2
3) =

(0, 1) or (1, 0), the solution becomes the (2, 1, 1) vacuum. When c2
1 = 3, (c2

2, c
2
3) = (0, 4),

or (4, 0) the solution becomes the (4) vacuum. When c2
1 = 1/3, c2

2 = c2
3 = 2/3, it is a

nonabelian BPS solution obtained from the N=2 case with the generalization ri+2 = ri.

When c2
1 = 1, c2

2 = c2
3 = 1 and so that Z = 0 and so the solution becomes the abelian BPS

solution.

For N=5, one can consider type of solution r1 = r4, r2 = r3, r5 type of solutions which

is invariant under the reflection of a pentagon. One gets a 7th order equation which is hard

to solve. However, one can in principle generalize this solution to the operator equations,

W = c1L+ + c2M+ + c3P− , (4.30)

where

L+ =















0 0 0 0 0

0 0
√

2 0 0

0 0 0
√

2 0

0 0 0 0 0

0 0 0 0 0















, M+ =















0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0















, P− =















0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0















. (4.31)

The coefficients ci satisfy the relations, (c2
2 +1)c2

3 − c4
3 = (2+ c2

2)c
2
1 − 2c4

1 and 2(c2
2 + c2

1)c
2
3 −

2c4
3 = (2 + 2c2

1 + c2
3)c

2
2 − 2c4

2. These equations are easer to solve, say for a given value of c3.

The equation for ri becomes more and more involved as N increases. We find a new

exact solution with N = 6, which does not appear in ref. [6], such that

r3 = r6 = 2 ±
√

4 − 2q ,

r1 = r2 = (1 + r3/2) ±
√

(1 + r3/2)2 − 2q ,

r4 = r5 = (1 + r3/2) ∓
√

(1 + r3/2)2 − 2q . (4.32)

In terms of matrices, the solution can be written as

W = c1L+ + c2M+ + c3P+ , , (4.33)

where

L+ =



















0
√

2 0 0 0 0

0 0
√

2 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



















, M+ =



















0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0
√

2 0

0 0 0 0 0
√

2

0 0 0 0 0 0



















, P+ =



















0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0



















. (4.34)
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The coefficients are given as 2c2
1 = r1 = r2, 2c2

2 = r4 = r5 and c2
3 = r3 = r6, and so

satisfy the constraints, c2
1 + c2

2 = 1 + c2
3/2, and 4c2

1c
2
2 = c2

3(4 − c2
3). The range is given by

0 ≤ c2
3 ≤ 2/5 or 2 ≤ c2

3 ≤ 4. The commutation relation [W,W̄ ] leads to

Z = c2
1L3 + c2

2M3 + c2
3P3 , (4.35)

where

L3 = diag(1, 0,−1, 0, 0, 0) ,

M3 = diag(0, 0, 0, 1, 0,−1) ,

P3 =
1

2
diag(−1, 0, 1,−1, 0, 1) . (4.36)

Note that P3 = −(L3 + M3)/2. The central charge becomes

J3 =
µ3

27

2

3

((

c2
1 +

c2
3

4
−
(

c2
1 −

c2
3

2

)2)

TrL2
a +

(

c2
2 +

c2
3

4
−
(

c2
2 −

c2
3

2

)2)

TrM2
a

)

. (4.37)

This solution interpolates the vacuum (3,1,1,1) at c2
1 = 1, c2

2 = 0, c2
3 = 0 or c2

1 = 0, c2
2 =

1, c2
3 = 0 and the vacuum (5,1) at c2

1 = 3, c2
2 = 0, c2

3 = 4 or c2
1 = 0, c2

2 = 3, c2
3 = 4, via the

abelian solution at c2
1 = c2

2 = 1, c2
3 = 2. Again this solutions can be generalized to arbitrary

dimension by considering N -dim representation of the SU(6) generators

5. Conclusion

In this work, we investigated the 1/2 BPS configurations with SO(3) angular momentum

in the BMN matrix theory. From the abelian BPS configurations, we have seen how non-

abelian field configurations can emerge and made a conjecture on the exact value of the

maximum angular momentum J3 as a function of N for irreducible nonabelian configu-

rations. From the fluctuation analysis of the BPS configurations around the nonabelian

vacuum we learned how nontrivial solutions can emerge from a given fuzzy sphere. Fi-

nally we found some exact 1/2 BPS configurations which are new because of the further

interpretation of the already known ones or some new type of solutions.

The general solutions of the 1/2 BPS equations have been found in the continuum

limit in ref. [6]. The BPS solutions can be characterized by the Riemann surface with

arbitrary number of genus and spikes. For finite N , it is more difficult to assign the genus

to the fuzzy object. For an irreducible nonabelian BPS configuration in a given N , one can

take a unique large N and continuing limit by taking the higher dimensional irreducible

representation of the same configuration. This may let us assign a unique genus number

to a given irreducible fuzzy object. Our exact BPS solutions are fuzzy tori type of genus

1. A variation of our approach may leads to more involved fuzzy Riemann surfaces. This

remains to be seen.

The 1/2 BPS deformations of the maximally supersymmetric AdS geometries in M

theory have been studied extensively [12, 13]. Our 1/2 BPS configurations in the BMN

matrix would correspond to the 1/4 BPS deformation of the AdS geometries. A direct
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supersymmetric geometry for BMN matrix theory has been studied [14]. Other classes of

1/4 BPS deformations of the AdS geometry in M theory have been also explored recently

[15, 16]. It would be interesting to find the geometric counterpart for the BPS fuzzy

Riemann surfaces studied here.

There are several degenerate vacua in the theory which are separated by an energy

barrier and the tunnelling between these vacua has been studied in detail [17]. As there

are enough supersymmetries, there is no lift of the vacuum energy due to the mixing by

tunnelling. Similar tunnelling would also manifest itself for the BPS configurations for

a given charge as there exist a lot of BPS configurations which are separated by energy

barrier. The quantization of the 1/2 BPS configurations taking into account the tunnelling

effect would be interesting. Still, we expect many quantum BPS states for a given N and

the BPS angular momentum J3. This leads to a natural index for counting the BPS states

as a function of N and J3.

In the context of Yang-Mills theory on R×S3, the 1/2 BPS states with SO(3) angular

momentum would correspond to the BPS chiral conformal operators with spherical angular

momentum. As all of fuzzy sphere vacua in the matrix theory are gauge equivalent to the

trivial vacuum in the Yang-Mills theory, our 1/2 BPS solution would correspond to a

special class of the 1/2 BPS solutions which has spatial angular momentum J3. Most of

the study of BMN matrix theory in the Yang-Mills theory context focuses on the cases of

SO(6) angular momentum, and it would be nice to extend this analysis to our case. (See

for example ref. [18] for a review.)
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